Sensorimotor integration in the primate superior colliculus. I. Motor convergence.

نویسندگان

  • M F Jay
  • D L Sparks
چکیده

Orienting movements of the eyes and head are made to both auditory and visual stimuli even though in the primary sensory pathways the locations of auditory and visual stimuli are encoded in different coordinates. This study was designed to differentiate between two possible mechanisms for sensory-to-motor transformation. Auditory and visual signals could be translated into common coordinates in order to share a single motor pathway or they could maintain anatomically separate sensory and motor routes for the initiation and guidance of orienting eye movements. The primary purpose of the study was to determine whether neurons in the superior colliculus (SC) that discharge before saccades to visual targets also discharge before saccades directed toward auditory targets. If they do, this would indicate that auditory and visual signals, originally encoded in different coordinates, have been converted into a single coordinate system and are sharing a motor circuit. Trained monkeys made saccadic eye movements to auditory or visual targets while the activity of visual-motor (V-M) cells and saccade-related burst (SRB) cells was monitored. The pattern of spike activity observed during trials in which saccades were made to visual targets was compared with that observed when comparable saccades were made to auditory targets. For most (57 of 59) V-M cells, sensory responses were observed only on visual trials. Auditory stimuli originating from the same region of space did not activate these cells. Yet, of the 72 V-M and SRB cells studied, 79% showed motor bursts prior to saccades to either auditory or visual targets. This finding indicates that visual and auditory signals, originally encoded in retinal and head-centered coordinates, respectively, have undergone a transformation that allows them to share a common efferent pathway for the generation of saccadic eye movements. Saccades to auditory targets usually have lower velocities than saccades of the same amplitude and direction made to acquire visual targets. Since fewer collicular cells are active prior to saccades to auditory targets, one determinant of saccadic velocity may be the number of collicular neurons discharging before a particular saccade.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus.

Afferent signals that guide orienting movements converge in the deeper layers of the SC in a wide variety of animals. The sensory cells are arranged topographically according to their receptive-field locations and, thereby, form maps of sensory space. Maps of visual, somatosensory, and/or auditory space have been obtained in the iguana, mouse, hamster, barn owl, chinchilla, cat, and monkey. The...

متن کامل

The Thalamocortical Projection Systems in Primate: An Anatomical Support for Multisensory and Sensorimotor Interplay

Multisensory and sensorimotor integrations are usually considered to occur in superior colliculus and cerebral cortex, but few studies proposed the thalamus as being involved in these integrative processes. We investigated whether the organization of the thalamocortical (TC) systems for different modalities partly overlap, representing an anatomical support for multisensory and sensorimotor int...

متن کامل

Exploring the superior colliculus in vitro.

The superior colliculus plays an important role in the translation of sensory signals that encode the location of objects in space into motor signals that encode vectors of the shifts in gaze direction called saccades. Since the late 1990s, our two laboratories have been applying whole cell patch-clamp techniques to in vitro slice preparations of rodent superior colliculus to analyze the struct...

متن کامل

The Primate Superior Colliculus and the Control of Saccadic Eye Movements

The superior colliculus is a brainstem structure playing a critical role in orienting movements of the head, pinnae, and eyes. The superior colliculus acts as an important intermediary between sensory and motor signals, issuing motor commands that are translated into the appropriate temporal code required by the motoneuron pools. Collicular cells are broadly tuned with respect to the direction ...

متن کامل

Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus.

Express saccades represent the fastest possible eye movements to visual targets with reaction times that approach minimum sensory-motor conduction delays. Previous work in monkeys has identified two specific neural signals in the superior colliculus (SC: a midbrain sensorimotor integration structure involved in gaze control) that are required to execute express saccades: 1) previsual activity c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 57 1  شماره 

صفحات  -

تاریخ انتشار 1987